翻訳と辞書
Words near each other
・ Solidarity logo
・ Solidarity Movement with Chile
・ Solidarity of Women of Ukraine
・ Solidarity Park
・ Solidarity Party
・ Solidarity Party (Egypt)
・ Solidarity Party (Lebanon)
・ Solidarity Party (Panama)
・ Solidarity Party of Afghanistan
・ Solidarity Party Youth League
・ Solidarity Prize
・ Solidarity Sweden-Latin America
・ Solidarity tax on airplane tickets (France)
・ Solid-state reaction route
・ Solid-state relay
Solid-state storage
・ Solidago albopilosa
・ Solidago altiplanities
・ Solidago altissima
・ Solidago arenicola
・ Solidago argentinensis
・ Solidago arguta
・ Solidago auriculata
・ Solidago bicolor
・ Solidago brachyphylla
・ Solidago brendiae
・ Solidago buckleyi
・ Solidago caesia
・ Solidago californica
・ Solidago canadensis


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Solid-state storage : ウィキペディア英語版
Solid-state storage

Solid-state storage (sometimes abbreviated as SSS) is a type of non-volatile computer storage that stores and retrieves digital information using only electronic circuits, without any involvement of moving mechanical parts. This is entirely different from the traditional electromechanical storage that records data using rotating or linearly moving media coated with magnetic material.
Solid-state storage devices typically store data using electrically programmable non-volatile flash memory, although some devices use battery-backed volatile random-access memory (RAM). As a result of having no moving mechanical parts, solid-state storage is much faster than the traditional electromechanical storage; as a downside, solid-state storage is significantly more expensive and suffers from the write amplification phenomenon.
To satisfy the requirements of applications in various types of computer systems and appliances, solid-state storage devices come in various types, form factors, storage space sizes, and interfacing options.〔
== Overview ==
Historically, secondary storage in computer systems has been implemented primarily by using magnetic properties of the surface coatings applied to rotating platters (in hard disk drives and floppy disks) or linearly moving narrow strips of plastic film (in tape drives). Pairing such magnetic media with read/write heads allows data to be written by separately magnetizing small sections of the ferromagnetic coating, and read later by detecting the transitions in magnetization. For the data to be read or written, exact sections of the magnetic media need to pass under the read/write heads that flow closely to the media surface; as a result, reading or writing data imposes delays required for the positioning of magnetic media and heads, with the delays differing depending on the actual technology.
Over time, the performance gap between the central processing units (CPUs) and electromehanical storage (hard disk drives and their RAID setups) widened, requiring advancements in the secondary storage technology. A solution was found in flash memory, which is an electronic non-volatile computer storage media that can be electrically erased and reprogrammed. Solid-state storage typically uses the NAND type of flash memory, which may be written and read in chunks much smaller than the entire size of the storage device. The size of a minimal chunk (page) for read operations is much smaller than the minimal chunk size (block) for write/erase operations, resulting in an undesirable phenomenon called write amplification that limits the random write performance and write endurance of flash-based solid-state storage devices. Another type of solid-state storage devices uses volatile random-access memory (RAM) combined with a battery that allows the contents of RAM to be preserved for a limited amount of time after the device's power supply is interrupted. As an advantage, RAM-based solid-state storage is much faster compared to flash, and does not experience write amplification.〔
As a result of having no moving mechanical parts, solid-state storage virtually eliminates the data access latencies present in electromehanical storage devices, and allows significantly higher rates of I/O operations per second (IOPS). Additionally, solid-state storage allows much faster sequential access to stored data, cosumes less power, and produces less heat and no vibrations during operation. As a downside, solid-state storage devices have much higher per-megabyte prices than electromehanical storage devices, and generally come in significantly smaller per-device capacities. Moreover, flash-based devices experience the memory wear that reduces their service life by imposing a limited amount of data that may be written to them, resulting from the limitations of flash memory that impose a finite number of program–erase cycles used to write data. As a result, solid-state storage is frequently used for the creation of hybrid drives, in which solid-state storage serves as a cache for frequently accessed data instead of being a complete substitute for the traditional secondary storage.〔〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Solid-state storage」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.